Knots Are Determined by Their Complements

نویسنده

  • J. LUECKE
چکیده

The notion of equivalence of knots can be strengthened by saying that K and K' are isotopic if the above homeomorphism h is isotopic to the identity, or equivalently, orientation-preserving. The analog of Theorem 1 holds in this setting too: if two knots have complements which are homeomorphic by an orientation-preserving homeomorphism, then they are isotopic. Theorem 1 and its orientation-preserving version are easy consequences of the following theorem concerning Dehn surgery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knots Are Determined by Their Complements

This answers a question apparently first raised by Tietze [T, p. 83]. It was previously known that there were at most two knots with a given complement [CGLS, Corollary 3]. The notion of equivalence of knots can be strengthened by saying that K and K' are isotopic if the above homeomorphism h is isotopic to the identity, or, equivalently, orientation-preserving. The analog of Theorem I holds in...

متن کامل

KNOTS DETERMINED BY THEIR COMPLEMENTS 3 Proof

The surgery theory of Browder, Lashof and Shaneson reduces the study of high-dimensional smooth knots n , ! S n+2 with 1 = Zto homotopy theory. We apply Williams's Poincar e embedding theorem to the unstable normal invariant : S n+2 ? ! (M=@M) of a Seifert surface M n+1 , ! S n+2. Then a knot is determined by its complement if the Z-cover of the complement is (n + 2)=3]-connected; we improve Fa...

متن کامل

High Dimensional Knots with Π1 ∼= Z Are Determined by Their Complements in One More Dimension than Farber’s Range

The surgery theory of Browder, Lashof and Shaneson reduces the study of high-dimensional smooth knots Σn ↪→ Sn+2 with π1 ∼= Z to homotopy theory. We apply Williams’s Poincaré embedding theorem to the unstable normal invariant ρ : Sn+2 −→ Σ(M/∂M) of a Seifert surface Mn+1 ↪→ Sn+2. Then a knot is determined by its complement if the Z-cover of the complement is [(n+ 2)/3]-connected; we improve Far...

متن کامل

Knot complements, hidden symmetries and reflection orbifolds

In this article we examine the conjecture of Neumann and Reid that the only hyperbolic knots in the 3-sphere which admit hidden symmetries are the figure-eight knot and the two dodecahedral knots. Knots whose complements cover hyperbolic reflection orbifolds admit hidden symmetries, and we verify the Neumann-Reid conjecture for knots which cover small hyperbolic reflection orbifolds. We also sh...

متن کامل

4 Great circle links and virtually fibered knots

We show that all two-bridge knot and link complements are virtually fibered. We also show that spherical Montesinos knot and link complements are virtually fibered. This is accomplished by showing that such knot complements are finitely covered by great circle link complements.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007